P-13

FLUORINE-18 EXCHANGE REACTIONS INVOLVING URANIUM PENTA- AND HEXA-FLUORIDES

D. K. Sanyal and J. M. Winfield*

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ (U.K.)

Fluorine-18 exchange between UF₆, UF₅, or UF₆⁻ salts and BF₂¹⁸F, PF₄¹⁸F, WF₅¹⁸F, or Me₃Si¹⁸F has been investigated both under heterogeneous conditions and in MeCN solution, with particular emphasis on those situations where comparisons with ligand substitution reactions of UF₆ and UF₅ can be made. In most reactions studied, essentially complete ¹⁸F exchange is observed, for example those between β -UF₅ and BF₂¹⁸F or Me₃Si¹⁸F have half lives <u>ca.</u> 6 min. at ambient temperature. However exchange between α -UF₅ and BF₂¹⁸F occurs to a lesser extent. The behaviour of the β -UF₅, BF₂¹⁸F system with time suggests that a surface complex is formed. β -UF₅ and UF₆⁻ have significant F-donor properties both in gassolid and in solution reactions. The same is probably true for UF₆, which is much more labile than WF₆. The lability of U^{VI}-F and U^V-F bonds indicated from the ¹⁸F exchange reactions is consistent with the lability of the recently reported derivatives UF_{6-n}(OMe)_n (E.A. Cuellar and T.J. Marks, Inorg. Chem., 1981, 20, 2129) and UF₅_Cl_n (J.A. Berry, J.H. Holloway, and D. Brown, <u>Inorg. Nucl. Chem. Lett.</u>, 1981, 17, 5), prepared for reactions of UF₆ and UF₅ with Me₃SiX, X = OMe or Cl. Insoluble UF₃(OMe)₂ is formed from UF₅ and Me₃SiOMe in MeCN, probably via the formation of U(OMe)₅ followed by ligand redistribution between U(OMe)₅ and UF₅. UF₃(OMe)₂ undergoes ¹⁸F exchange with Me₃Si¹⁸F but its reaction with Me₃SiOMe is very slow. Mixtures of U^V chlorofluorides, together with (CF₃)₂CO, are formed from UF₆ and B[OCC1(CF₃)₂]₂.

P-14

HALOGEN EXCHANGE AT THE SURFACE OF FLUORINATED CHROMIUM(III) OXIDE. AN ISOTOPIC TRACER STUDY

J. Kijowski, G. Webb, and J. M. Winfield*

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ (U.K.)

The chromium(III) oxide catalysed fluorination of chlorinated ethanes by hydrogen fluoride is well documented, but little is known about the nature of the surface or the substrate-catalyst interactions. We have undertaken an isotopic tracer study to obtain information in this area. The uptake of HF by catalyst samples at 350°C is considerable, and in the early stages is accompanied by the formation of a liquid product, presumed to be aqueous HF. ²H₂, catalyst exchange experiments indicate that exchangeable hydrogen, present in fresh catalyst samples as surface hydroxyl groups, is completely removed by treatment of the catalyst with HF. Fluorine-18 deposited on the catalyst using H¹BF can be partially removed at 350°C either (i) by flowing He over the catalyst, (ii) by flowing inactive HF over the catalyst, or (iii) by treatment of the catalyst with inactive HF under static conditions. The fractions of fluorine-18 retained depend on the conditions used, being (i) >85%, (ii) 30-50%, and (iii) 60-70% respectively. Flowing CCl₂F.cClF₂ at 350°C over catalysts pretreated with HF or H¹⁸F results in mixtures of C₂Cl_{6-n}F_n, n = 2-5, as identified products, indicating that several Cl-F exchange equilibria are involved. Under the conditions used the overall reaction appears to be zero order in gaseous CCl₂F.CClF₂. Incorporation of ¹⁸F in the products is observed, but it occurs only to a relatively small extent. The implications of these observations for possible reaction mechanisms will be discussed.